Duncan & Arrow Reservoir Options Post 2024 Sounding Board - Columbia River Treaty Review Cranbrook, B.C. July 5th, 2013

Eagle Creek confluence, Lower Arrow, Fall 2004

Alan Thomson MRM P.Eng.

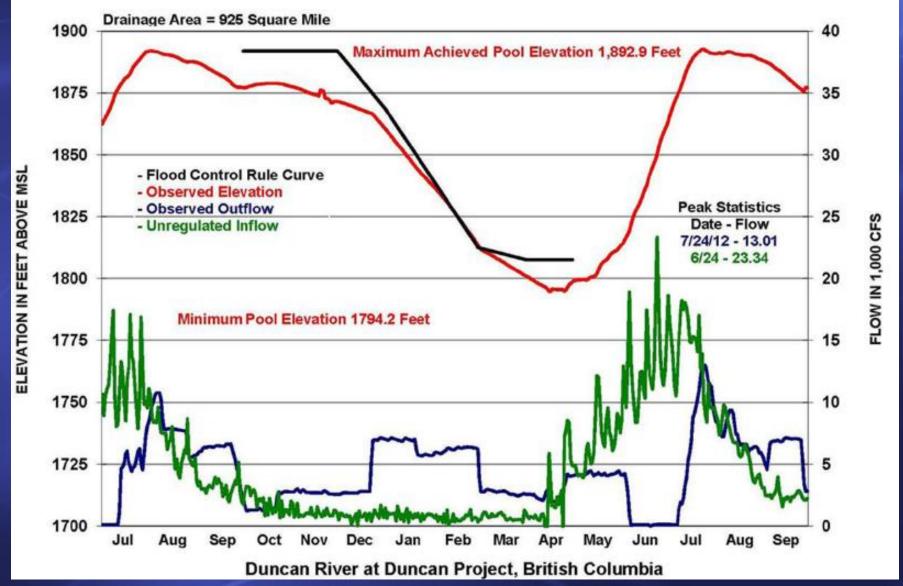
Mountain Station Consultants Inc.

Nelson, B.C.

45 Minute Agenda

- 1. Duncan Reservoir options High Level View
 - Status Quo no change to facility or operation
 - Decommission dam
 - Install power generation infrastructure
- 2. Dam decommissioning description and cost
 - Duncan and Hugh Keenleyside dams, ALGS
- 3. Arrow Reservoir Stable pool benefits and issues.
- 4. Conclusions / Questions / Discussion

Duncan Reservoir and Dam



Duncan Reservoir & Dam

- <u>Primary Purposes</u>: increase generation revenue of downstream hydro projects; flood control benefits in Kootenay Lake, Trail, Castlegar and US (Portland).
- Reservoir 45 km long; 71.5 km² at full pool; fluctuates 30-31.4 m.; live storage 1.4M acre-ft or 1.73 km³
- <u>Dam</u> earth filled; no installed generation; 792 m long;
 38.7 m high; low level outlets; spillway.
- BC Hydro owned and operated; operation dictated largely by Columbia R. Treaty.

DUNCAN

July 1, 2011 to September 30, 2012

1a/ Status Quo option for Lower Duncan River

Operate for downstream power and flood control Maintain current water release schedule and protocols

Fish

- Stranding in side channels ramping rate protocols
- Spawning in side channels and mainstem flow quantity and duration.
- Bull trout passage; mitigated through low level outlets

Mosquitoes

Increase in quantity; reduction in quality of life for area residents

Total Gas Pressure, Water Temperature

- TGP increases in lower Duncan River with spilled water >90 m3/s.
- Water temperature strongly correlated with releases from spill way and low level outlets; provincial WQ guidelines exceeded at times.

1a/ Status Quo option for Lower Duncan River

Operate for downstream power and flood control Maintain current water release schedule and protocols

Flooding

- Lower Duncan properties can flood during August releases (up to 400 m³/sec.)
- Erosion Protection in Argenta Slough.

Riparian vegetation

Reduced cottonwood recruitment along river banks

1b/ Status Quo option for Duncan Reservoir

Operate for downstream power and flood control

Maintain current water release schedule and protocols

Terrestrial Wildlife

 Loss of riparian vegetation important for wildlife due to unnatural inundation

Fish stocks

- All species (Burbot, rainbow, bull and cutthroat trout, whitefish, kokanee, white sturgeon, plus non-sport fish) impacted to an unknown degree.
- Entrainment
- Loss of littoral zone
- Burbot spawning in tribs.

Recreation

 Drawdown makes navigation, access (east shore) difficult.

Cultural Resources (?)

 Bank erosion due to fluctuating reservoir levels potentially affects 2 sites.

Major Tradeoffs with Current Operations, Ongoing Costs

- Power Generation vs.
 - Flows for fish in the lower Duncan R.; fish habitat in reservoir
 - Flood management
 - Mosquito breeding in Duncan R. lowlands
 - Wildlife in lower Duncan Cottonwood recruitment
 - Wildlife habitat in reservoir
 - Costs estimated \$2.6M/yr from lost generation revenue due to operational constraints
- Recreation Quality vs. Reservoir Riparian Productivity.
 - Keep reservoir high in summer months
- Physical works costs.
 - Side channel fencing, physical works throughout (4 as of 2013 costing \$2.2 M as reported in WUP Annual Report),
- Ongoing Monitoring and Assessments (17 as of 2013; cost ~\$9M in 2013 WUP Annual Report).

Second Option: Decommission Dam

- Drain reservoir
- Notch dam
- Remove spillway and seal low outlet tunnel
- Build and stabilize new channel

 Rehabilitate Duncan R. and watershed to pre-dam condition (over time).

Duncan Dam

Pre Dam Construction

Post Dam Construction

Glines Canyon Dam Elwha River, WA. Removal 2012.

210 feet high. Reservoir: 250 hectares \$351 M final cost for removal of 2 dams

Source: National Parks Service

Coursier Dam Decommissioning 2003.

- 19 m high, 685 m long
- Storage of 11,000 acre ft
- Dam safety issue

Figure 5 - Natural revegation of former reservoir above

El 1274 since 1998

Cost to Decommission

- Coursier (2003): \$4.6M for 0.1M m³
 of material moved, 1.27 km² upland
 restored.
- Duncan (2013): 1.1M m³ of material moved; 21.5 km² of floodplain, upland restored (17x).
- Estimate \$70-\$100M; requires a full accounting cost/benefit analysis that would include:
 - lost revenue from downstream generation (Kootenay R. plants and US Columbia R. plants)
 - impact on ALGS and Arrow Reservoir (generation, flood control, etc.)
 - Ecosystem benefits, compensation/monitoring costs, etc.

Coursier Dam, S. of Revelstoke

For reference:

- Glines Canyon dams (WA): \$351M US for 2 concrete dams.
- Klamath R. watershed (OR, CA): 4 concrete dams for \$460M US

Third Option for Duncan Install Generation

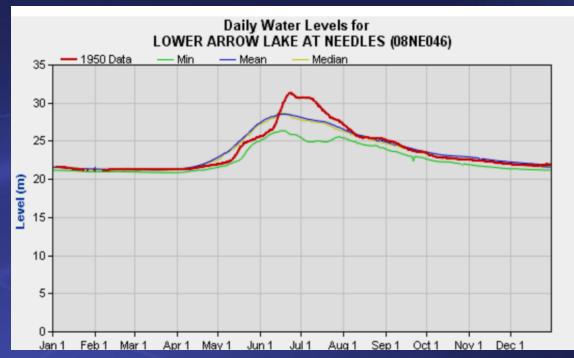
- CPC: Initial pre-feasibility exploration of generation potential.
- 20-30 MW generation capacity; 80-120 GWh/yr.
- Install units in existing low level outlet area.
- \$100-\$130/MWh cost range.
- Operate January June.
- Transmission to Kaslo with line upgrade.
- Waneta is CPC's current focus.

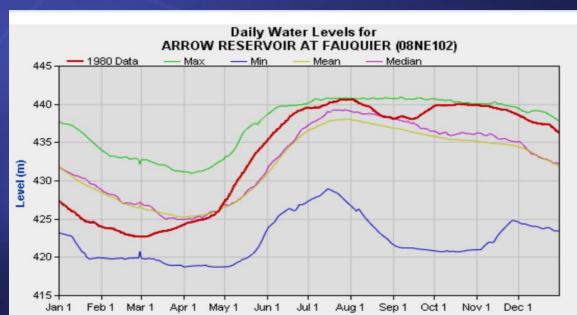
Contrast three options

- Status Quo (#1) and Installing Power Generation (#3) are very similar in terms of continuing impact.
 - Generation: Provide alternative BT passage; CPC revenue; fund local initiatives, employment, etc.

Dam Decommission

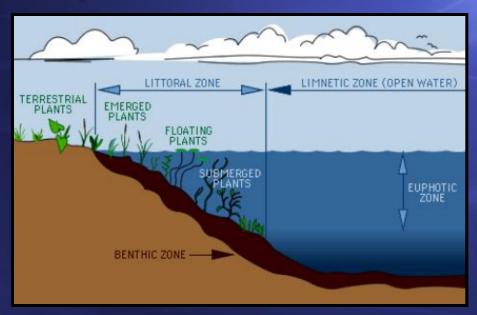
- Reservoir riparian vegetation will re-establish; benefits wildlife, shore erosion.
- all dam/reservoir related <u>fish</u> issues will be resolved (stranding, access to spawning/rearing habitat past dam, entrainment, etc.)
- Mosquitos ? poor conditions pre-dam in LDR.
- TGP/temperature non-issues.
- Kootenay Lake fertilization reduce or eliminate.
- Reduced generation revenue and flood management control in Kootenay Lake.


Arrow Lake Numbers


- Length: 240 km
- Area at full pool: 464 km²

- Drawdown 40-50 ft; up to 66 ft if required
- Area between high and low pool: 19 km²

Arrow Reservoir Water Levels

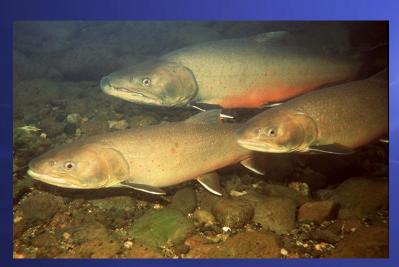

1930-1968 – before HLK dam commissioned. Red line: 1950

1969-2011 – after HLK dam commissioned. Red line: 1980

Source: Water Survey of Canada

Known Impacts

- Considerable and persistent impacts. Well documented, studied, understanding somewhat clear, on going monitoring/adjusting; quantitative and qualitative impact assessments.
 - Link most Arrow impacts
 (environmental and others)
 back to <u>fluctuating</u> water
 levels, and unnatural
 drawdown and flood
 duration/timing.
 - Propose reservoir operation to mimic natural lake hydrograph - constant elevation with short duration spike during freshet.


Current Arrow Reservoir Issues and Mid Elevation Constant Pool Effect

- Fluctuating levels impact recreation, tourism and forestry
 - Shore and boat recreation/tourism; beaches disappear.
 - CP: shore access greatly improved; beaches in late summer.

Fisheries

- Access to spawning tributaries compromised at low level; channel degradation due to fluctuating res. levels
- CP: Fish access greatly improved; increased stable spawning habitat exposed in fall for KO.

- Productivity may be limited by low spring reservoir levels.
- CP: Development of littoral zone will increase biological productivity.
- Compensation programs somewhat ineffective (creel surveys indicate decreasing BT and KO populations).
- CP: scale back many compensation programs.

Wildlife

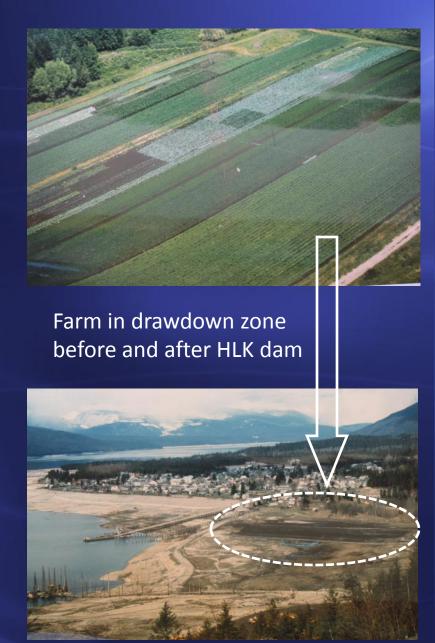
- Rising spring levels displace nesting waterfowl and shorebirds; fall levels impact migratory bird habitat availability; reduced fish populations impact raptors; riparian areas lost; acute problems in Mid-Columbia reach downstream of Revelstoke.
- CP: Water still rises in spring but to lesser degree and shorter duration.

Erosion

- Shoreline erosion caused by fluctuating levels; biologically productive littoral zone non-existent.
- CP: shoreline riparian vegetation will resist erosion; littoral zone will return.

Navigation safety

- Accidents due to changing water levels and boating hazards exposed at lower levels.
- CP: both addressed.



Highway damage

- Road sinking and sluffing following very high reservoir levels.
- CP: addressed

Cultural sites

- Erosion at several cultural sites due to fluctuating reservoir levels
- CP: erosion will subside but overall effect unknown due to lack of public info.
- Social and community health and well being.
 - CP: would address some of the residual social impacts and the hurt, anger and mistrust felt by Arrow Valley residents.

- Dust generation during drawdown
 - CP: greatly reduced dust generation.
- Expenses
 - Compensation programs reduced.

- Agricultural loss, access to forestry operations, Log booming limited at low levels; marinas impacted at high levels; many others.
- CP: limited agriculture could take place in some locations; productivity would increase over time.
 Log booming and marinas both benefit.

Arrow Lakes Generating Station

- Cost \$270M; 1,000 person-years of employment.
- Up to 185MW capacity;
- Jointly owned by CPC/CBT, managed by BC Hydro, operated by Fortis.
- Generates power when reservoir between ele. 1395 to 1446 ft.; greater output at higher reservoir elevations.
- Net annual income ~ \$14M-\$16M excluding Waneta financing costs

Mid elevation constant pool

Not modeled by BPA, BC Hydro (high constant pool was).

Pro

- Arrow Lk Gen Station: at elevation 1425 ft. output average 2002present: 2,800 MWhrs per day; 63% capacity.
- Current average over all years: 2,200 MWhrs per day.
- Revenue?; power value varies seasonally.
- All socio-economic attributes associated with stable pool.
- Mid Columbia; greater terrestrial, bird habitat exposed; more riverine habitat.
- Kokanee access constant, greater low gradient spawning habitat, more valley bottom terrestrial habitat.

Con

- Loss of some Mid –Columbia ecological values.
- Terrestrial and aquatic rehabilitation costs; socio-economic adjustment costs; others

Tradeoff

Generation at ALGS vs. ecological values in Mid Columbia reach.

Arrow Decommissioning Issues & Cost

- Unprecedented in scope.
- ALGS removed (\$270M+ facility), intake channel filled; HLK earthen and concrete dam removed, locks deactivated, dam area completely restored.
- Reservoir infrastructure costs (roads relocated, ferry infrastructure, recreational facilities, municipal infrastructure, ...etc.)
- Rehabilitation/restoration costs for 108.4 km² of pre-dam wetlands, floodplain and uplands areas.
- >\$250 M

Arrow Performance Measures – Are They Sufficient?

Existing PM

All associated with weekly or seasonal reservoir elevation changes i.e. – inside the reservoir footprint.

All associated with the WUP as developed *inside the constraints* of the CRT.

- Mid Columbia and Arrow Reservoir PMs
 - Navigation, Recreation, Heritage and Culture, Dust, Wildlife, Fish,
 Vegetation, Erosion.

Additional PM or...

Suggest examine issues using full cost accounting principles that are external to reservoir footprint to examine operating alternatives. Not necessarily Performance Measures.

 e.g.- Agricultural production, economic and regional development, tourism potential, social health, etc.

Next Steps

Duncan

- Report out Duncan operation and costs/benefits with/without Treaty;
- Consider impacts on revenue, flood control, environmental benefits/costs.

Arrow

- Model mid pool constant elevations in 1415-1430 ft range; impact on Mica to lower Columbia.
- Update Performance Measures used to evaluate various Arrow constant pool scenarios.
- Evaluate ALGS under various constant pool scenarios.

Duncan Conclusions

- Impact of Duncan operations very similar under Status Quo and Generation options
- Dam Decommissioning would resolve most if not all environmental issues but comes at a lost revenue cost; unprecedented in scale but not impossible
- Difficult to fully assess Duncan options when relatively little is known about reservoir biological values; ongoing monitoring studies remain inconclusive.
- Other options for Duncan operation may exist other than those presented.

Arrow Conclusions

 Arrow low-mid constant pool elevation scenario mitigates many current socio-economic and environmental impacts;

 Reservoir modeling and public consultation required to determine optimal elevation.

 Reservoir rehabilitation under low-mid constant pool scenarios is unprecedented but possible given adequate resources.

Arrow Conclusions

 ALGS generation is likely profitable under a variety of constant mid pool scenarios.

 Decommissioning HLK dam expensive and not required to achieve multiple benefits associated with low-mid constant pool option.

Thank you. Questions...

Kokanee Spawning Channel

Alan Thomson MRM P.Eng. Mountain Station Consultants Inc., Nelson B.C.