

BC Hydro Generation system operation

Columbia Basin Regional Advisory Committee

Renata Kurschner

Director, Generation Resource Management

11 September 2014

Generation System Operation

- Coordination of provincial generation (Heritage resources, IPPs, partner generation under Canal Plant Agreement)
- Operation mainly impacted by:
 - Inflows
 - Market Prices
 - Loads
 - Generation Availability
 - Columbia River Treaty
 - Water Use Plans
- BC Hydro large (multi-year) storage system is operated for <u>long term</u>, as opposed to annual, economic goals on a consolidated basis (domestic and trade activity)

Generation Mix - Energy

Benefits of System Storage

System Hydro Inflow & Load Obligations

^{*} Inflows are representative of system-normal as of Feb 2014

Annual Profile of System Storage

30000

Generation System Operation

Timeframe:

Beyond 3 years

Timeframe:

3 years to real time

Planning (IRP)

Energy studies

Operations Planning

Real Time Dispatch

Forecasts future load, determines supply needs (energy and capacity) and acquires resources

Monthly system modeling maximizes long term net revenue from operations and determines:

- storage operation
- water values
- domestic buy/sell
- system surplus capability for trade

Short term operations planning

- detailed operating plans for individual plants
- considers all risks and constraints, incl. water conveyance, flood control, WUP requirements

Day ahead operating plan and hourly generation dispatch / water conveyance to meet load requirements and trade opportunities in a most economical manner; manages within the day unexpected events

Informed by forecasts:

weather and inflows, market prices, loads, unit outages, transmission availability

Columbia Basin in Canada

What Impacts Columbia Basin Operations?

- Water Licenses (diversion and storage for power generation)
- Inflows (across the system, incl. US Columbia basin)
- Market Prices
- Loads
- Generation Availability (across the system)
- Columbia River Treaty
- WUP constraints and other environmental/social objectives
- Other Agreements
 - Non Treaty Storage
 - Libby Coordination Agreement
 - Non-Power Uses (or "Flow Augmentation") Agreement

Inflows

Benefit of "Two River" policy is inflows into system reservoirs are roughly independent — but range of variation in system inflows is 16,000 GWh

Reliable power, at low

at low cost, for generations

Market Electricity Prices

BChydro ©

BC Hydro Domestic Load, Generation, & Market Activity - Daily Pattern

Columbia River Treaty

- Regulate flow for optimum <u>power and flood control</u> in both countries
- Creates requirement for:
 - flood control space at Mica, Arrow and Duncan
 - specific flows across the border (Arrow discharges)
- Power generation and flood control are generally well aligned drafting in winter when load high creates flood control space in reservoirs in expectation of spring flows
- Flood control requirements rarely limiting at Mica & Duncan, but often at Arrow (and Libby)
- Silent on other values (ie fisheries, recreation)
- Entities enter into supplemental agreements to "adjust", by mutual agreement, flows at the border to accommodate other interests

Non Treaty Storage Agreement

- Commercial agreement between BC Hydro and BPA to coordinate use of Mica storage not covered by Treaty for mutual benefit
- Decisions are made weekly by mutual agreement
- Provides for adjustments to Arrow discharges from those required by CRT (store into NTS when discharges reduced and vice versa)
- Optimizes both power and non-power benefits
 - BC Hydro gains better flexibility to create economic value and balance Columbia WUP objectives
 - BC Hydro receives a share of downstream benefits created by improved regulation under the NTSA
 - More flexibility to generate at Mica across fall/winter for system load
 - Reduced spill risk at Mica
- BC Hydro and BPA low water supply event releases firm energy and fisheries benefit

Short Term Libby Coordination Agreement

- Original LCA (signed in 2000) addressed the impacts of power losses as a result of US unilaterally changing Libby operation in 1993 to support white sturgeon spawning but to the detriment of Kootenay River power generation
- Canadian Entity objected to further US changes to Libby operation implemented in 2003 and as a temporary and partial mitigation entered into a Short Term (supplemental) LCA that provides additional power loss mitigation and ensures cooperation prior to and during flood events.
- Canada desires to better address flood risk management in any future long term agreement

Non Power Uses Agreement

Canadian interests:

- Decreases Arrow discharges (storage) in Jan and keeps flows more steady until Mar for whitefish spawning
- Provides flexibility to keep flows steady or increasing from Apr through Jun for trout spawning

US interests:

 Release of storage in Jul to supplement Treaty flows for salmon outmigration (hence agreement also called Flow Augmentation Agreement); note that flows may be further augmented in Jul and Aug by release of NTSA if there was NTSA storage during the period of Apr
 Jun

WUP operating constraints

	_	_
WUP Name	Date Signed	Operational Constraints
Columbia River Project (Mica/Revelstoke/Arrow)	11 Jan 2007	 MIN and MAX reservoir levels. MIN Revelstoke downstream flow requirements. Soft constraints
Water Hardman Project	21 Mar 2006	MIN and MAX headpond reservoir levels.MIN downstream flow requirements.
Whatshan Project	15 Jun 2005	MIN reservoir levels.
Elko Project	7 Apr 2005	MIN downstream flow requirements.Generation station discharge ramping rates.
Spillimacheen Project	15 Jul 2005	MIN downstream flow requirements.Generation station discharge ramping rates.
Aberfeldie Project	6 Nov 2006	 MIN and MAX headpond reservoir levels. MIN downstream flow requirements. Generation station discharge ramping rates.
Seven Mile Project	8 Dec 2006	MIN and MAX reservoir levels.Considerations for reservoir recreation/fisheries.
Duncan Project	20 Dec 2007	 MIN and MAX reservoir levels MIN and MAX downstream flow requirements. Dam spill discharge ramping rates.

BC Hydro system operations

WUP monitoring and physical works

WUP Name	Key WUP Monitoring and Physical Works	Total Cost of Monitoring and Works*
Columbia River Project (Mica/Revelstoke/Arrow)	<u>Physical works</u> : Boat ramp access, debris removal, vegetation replanting; <u>Monitoring studies</u> : Recreation & boat use; Wildlife (birds, amphibians & reptiles); Fish (whitefish, rainbow trout, white sturgeon, and burbot); Vegetation inventory & erosion; Archeological site assessments	\$108 M Expected completion in 2019
Water Hardman Project	Physical works: Diversion Dam Min Flow Release Facility; Annual Gravel Placement; Monitoring studies: Fish (kokanee, rainbow trout, temperature effects and habitat monitoring)	\$973 k Program completed in 2012
Whatshan Project	Physical works: Boat ramp access, Habitat Enhancement; Monitoring studies: Wildlife; Fish (rainbow trout); Vegetation mapping; Archeological site assessments	\$764 k Expected completion in 2015

WUP operating constraints and works

WUP Name	Key WUP Monitoring and Physical Works	Total Cost of Monitoring and Works*
Elko Project	Monitoring studies: Monitoring of Habitat Maintenance Flows; Side Channel Sinkholes, Total Suspended Solids and fish stranding	\$89 k Program completed in 2011
Spillimacheen Project	Monitoring studies: Assessment of Rampdown Rates; Gravel Recruitment; Monitoring of Habitat Maintenance Flows	\$68 k Program completed in 2011
Aberfeldie Project	Monitoring studies: Fish (Habitat; Productivity and Effectiveness of Fish Habitat Works)	\$641 k Program completed in 2013
Seven Mile Project	Monitoring studies: Fish (Stranding and Bull Trout entrainment)	\$395 k Program completed in 2009
Duncan Project	Physical works: Boat ramps & erosion protection Monitoring studies: Wildlife & mosquitos; Fish habitat & use(kokanee, bull trout, Burbot); Vegetation monitoring; Archeological site erosion	\$10.6 M Expected completion in 2018

BC Hydro system operations

BChydro @

Mica operation – typical drivers

MICA

Elevation and Streamflow Hydrographs

July 1, 2012 to September 30, 2013

Typical
Operational
drivers:

Relial

Jul to Oct*: discharge adjusted as needed to refill reservoir, minimize spill, & maximize electricity value

Nov to Mar: high discharge to meet electricity demand, discharge sometimes limited in Feb-Mar by Arrow Reservoir flood control curve.

Apr to mid-Jul: low electricity value, so discharge reduced to refill reservoir *Note – Mica discharges during Jul-Oct can be quite variable, depending on spill probability at Mica and other reservoirs (e.g. ns. Williston) as well as market electricity values

Arrow operation – typical drivers

Typical CRT & operational drivers:

Jul-Aug: discharge increased to meet CRT needs & release Flow Aug water

Aug

Jul

1360

1350

Sep-Dec: discharge lower to preserve storage in case of low snowpack. NTSA & STLA activity if economic.

Nov

Dec

Jan

Jan-Mar: higher discharges (if snowpack OK); sup. agrmts manage for steadier whitefish spawning flows Apr-June: lower, stable discharges to refill reservoir, manage trout spawning

May

Jun

Jul

Apr

Mar

ower, at low cost, for generations.

50

Sep

Duncan operation – typical drivers

DUNCAN

Elevation and Streamflow Hydrographs July 1, 2012 to September 30, 2013

control needs.

curve.

Reliable

drivers:

flooding

liable power, at low cost, for generations.

BC hydro

Kootenay Lake operation – typical drivers

KOOTENAY LAKE

Elevation and Streamflow Hydrographs

July 1, 2012 to September 30, 2013

eliable power, at low cost, for generations.

BChydro @

Libby operation – typical drivers

LIBBY

Elevation and Streamflow Hydrographs
July 1, 2012 to September 30, 2013

Reliable

Typical

drivers:

operational

le power, at low cost, for generations.

BChydro (

Questions?

